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This paper is a presentation of a new type of cislunar transfer
orbit that has encounters with the Moon twice per month every
other month.  The use of this technique is suggested for Earth-
to-Moon Cycler spacecraft that contain the heavy and
expensive life support equipment for human transfer from low
Earth orbit to the Moon and for logistical supply of lunar bases.
The basis for the technique is a 180° near-circular Moon-to-
Moon transfer orbit that is inclined to the Earth-Moon plane by
an angle that is compatible with a low-inclination, near-
minimal energy Earth-to-Moon transfer orbit.  Also included
are preliminary discussions of Cycler spacecraft logistics for
extensive manned operations on the Moon.  Numerical studies
are included to verify the usefulness of the technique in a
realistic cislunar dynamic environment and estimates of
navigation propellant requirements are given.

Introduction
In 1985, Aldrin [1]suggested the use of Cycler orbits (periodic trajectories that repeat the round-
trip transfer from home planet to destination planet) for the life support equipment and
logistical supplies necessary for extensive manned exploration of the Moon and Mars. He also
presented his thoughts on the benefits of using Cycler spacecraft at the Space 88 Symposium in
Albuquerque during a panel discussion on "Approaching the Construction Problems in Space."
These trajectories must have the characteristic that they can be easily targeted for either
launch or destination planet and that the times between encounters yield a reasonable stay
time on the destination and provide for both routine and emergency return on a fairly regular
basis.

In 1989, Uphoff [2] showed how the  strength of the lunar gravity field can be used to yield a
high-inclination (~45°) near circular Moon-to-Moon transfer trajectory that is compatible (has
the same Jacobian constant) with a low-energy, low-inclination transfer from LEO to the Moon.
This transfer orbit was dubbed "the BackFlip" in Reference 2 and was suggested there as a
means of reversing the phase of Double Lunar Swingby [3] trajectories.  In this paper we
recommend the use of the same technique for  semi-permanent logistic Cycler spacecraft which
contain the life support equipment for the astronauts in transit to and from the Moon as well as
storage facilities which provide a round-trip propellant depot capability.

This paper contains a description of the BackFlip concept, a 180° Moon-to-Moon transfer tha t
permits two lunar encounters in about 14 days.  Also discussed are unsuccessful attempts to find
sequences that permit the immediate repeat of the BackFlip so as to maintain continuous
encounters every 14 days.  It turns out that such trajectories are possible but require a retrograde
orbit ( i > 130°) that is incompatible with low-energy Earth-to-Moon trajectories.  Our solution
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to this problem is to insert a one-month lunar return holding orbit into the sequence of Earth-
Moon-Moon-Earth transfers.  In this way, it is possible to achieve semi-monthly Moon-Earth
transfer windows using only two Cycler spacecraft.  This technique has the added advantage
that the two Cycler spacecraft can easily be joined together in case of emergency or to build onto
an existing Cycler structure.  These Cyclers  require no nominal ∆V to remain on station and
require targeting maneuvers of the order of a few meters per second per month to transfer
between the constituent orbits even during extensive operations.

This methodology is sometimes perceived as a curiosity because, at first sight, it appears not to
save any substantial ∆V. Moon-bound travelers must take a taxi from LEO to the Cycler and
then another taxi from the Cycler to lunar orbit or lunar surface.  The real savings come from the
ability of the Cycler to provide propellant depot capability, safe-haven for astronauts during
solar storms, and the fact that the heavy life-support equipment must be lifted from LEO only
once.  These and other advantages are discussed below.

Cislunar Transfer Basics
Most of the calculations required to study the trajectories presented here can be accomplished
using the zero-sphere-of-influence (or point-to-point) patched-conic technique described in [2]
and [4].  Of great conceptual assistance is the Jacobian integral [5] in the circular restricted
three-body problem.  It can be shown that the zero-patched conic method satisfies the Jacobian
integral in the circular restricted problem to within terms of the order of the mass ratio of the
two primaries and the normalized Moon-passage distance.  After the fundamental quantities
are established using these approximations, one can verify the usefulness of the trajectories us-
ing full-model numerical integration to include the effects of solar gravitational perturbations
and other disturbances not included in the preliminary model.  It is important, however, to use
the vector methods described below (and in [2]) so as to include the effects of the ellipticity of
the Moon's orbit.

The Dynamics of Moon-Passage
Figure 1 is a velocity diagram of the relevant quantities in a typical lunar swingby showing the
velocities in an Earth- relative frame and their analogs in a Moon-centered coordinate system.
If VIN is the Earth-relative velocity vector on the transfer at lunar encounter (before the
swingby), then V∞ IN =  VIN - VM, is the incoming hyperbolic excess velocity of the Moon

passage hyperbola and VM is the Moon's velocity vector  (not necessarily perpendicular to the
Earth-Moon vector).  The transformation back to Earth-relative velocities after the swingby is
given by, VOUT = VM  +  V∞OUT.
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Fig. 1  Zero-Patched Conic Velocity Diagram
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The key to the zero-patched conic method is to require
V∞OUT      =    V∞IN

and then to treat the swingby as a two-body problem during Moon passage.  This technique is
nearly identical to the one used by Rutherford in his famous analysis of the scattering of a lpha
particles in the early days of nuclear Physics.

The required angle, α , between the incoming and outgoing excess vectors can be obtained from
the vector relationships above.  The eccentricity of the hyperbola is then found from
arcsin(1/e)  =  α/2,  and the radius of perilune passage is obtained as  rp =  µ(e-1)/v∞2.  These
methods have been applied to the lunar swingby problem for many years and usually provide
starting conditions that are sufficiently accurate to begin a full-model simulation or targeting
procedure.

The BackFlip or 180° Moon-to-Moon Transfer
In [2], a powerful technique for cislunar orbit shaping was presented; it was suggested there as a
means for quickly reversing the phase of Double Lunar Swingby trajectories.  This technique,
called "the BackFlip", can be used for many cislunar applications and forms the dynamical
heart of the repeating Cycler orbits presented here.

The velocity vector diagram shown in Fig. 2 is an example of a very useful devise due to P.H.
Roberts [4] that shows the loci of achievable post-swingby trajectories for situations where the
spacecraft is constrained to maintain certain energy values.  In Fig. 2, the conditions for
achieving a near-180° Moon-to-Moon transfer are shown.  The figure shows two fundamental
spheres representing the loci of trajectories that have equal Earth-relative energies after the
swingby (Equal Energy Sphere centered on the tail of the Moon's velocity vector) and the loci of
trajectories having equal Moon-relative excess speed (Equal V∞ Sphere centered on the head of
the Moon's velocity vector).  Of course, the zero-patched conic method (and the constancy of the
Jacobian integral)  demand that all outgoing trajectories have the same value of V∞ as the
incoming trajectory.      
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Fig. 2  Velocity Vector Diagram for BackFlip
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The objective of the BackFlip is to transfer from Moon to Moon in approximately half a lunar
month (about 14 days).  A little reflection on Lambert's theorem will show that this is possible
(for transfer angles less than 360°) only if the transfer orbit has the same orbital energy as the
Moon's orbit with respect to the Earth.  Thus, the BackFlip must have the same Earth-relative
speed as the Moon immediately after the swingby (|VOUT| = |VM|) and the outgoing Earth-
relative velocity vector must lie on the Equal Energy Cone shown in Fig. 2. This cone has its
apex at the Moon's center and is truncated by the circle representing the intersection of the
Equal V∞ Sphere and the Equal Energy Sphere.

Not only must the BackFlip orbit have the same orbital energy as the Moon, it must have the
same ellipticity (e ≈ 0.055) if it is to go from where the Moon is at the time of  the first
encounter to where the Moon will be half a revolution later.  The conditions for the BackFlip
therefore require that the outgoing Earth-relative velocity vector have the same path angle as
the Moon at the first encounter.  This condition is represented by the (much exaggerated) Equal
Gamma Cone in Fig. 2.  Thus, for a given incoming |V∞IN|, there are only two outgoing Earth-
relative velocity vectors that will yield the half-month Moon-to-Moon transfer, those
represented by the intersections of the Equal Energy and the Equal Gamma Cones in the figure.
The two options correspond physically to 180° transfers above and below the Earth-Moon plane
respectively.  In the figure, only one of the vectors is shown.
 

Lunar Orbit

    High Inclination
      Near Circular
Moon-to-Moon Transfer

Translunar
Trajectory

Earth Return
Trajectory

Fig. 3  The  BackFlip -- 180° Moon-to-Moon Transfer

Figure 3 shows a physical view of the BackFlip as it was presented in [2] where the technique
was suggested as a means of reversing the phase of Double Lunar Swingby [3] trajectories or,
indeed, of most cislunar trajectories, in a minimum of time without the need for on-board
propulsion.  The figure shows the near-minimal-energy Earth-to-Moon transfer trajectory, the
Moon-to-Moon transfer, and an Earth-return trajectory.  The entire sequence shown can be
accomplished without the need for propulsion beyond that required to insert into the initial
trans-lunar trajectory and small navigational impulses required to ensure the proper aim-points
for the lunar encounters.  The lunar  passage distances for these encounters are of the order of
4000 to 8000 km, well above the lunar surface.  Errors in aim-point at the first encounter can be
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corrected by the application of a few meters per second of ∆V, applied in the early portion of
the BackFlip trajectory, to ensure the second lunar encounter.

In [2], the global conditions for the inclination of the BackFlip were given in the framework of
the circular restricted three-body problem.  Jacobi's integral of that problem can be
approximated by the linear combination of energy and axial angular momentum in a non-
rotating Earth-centered frame as C = E - n' hz  where E represents the Earth-relative orbital
energy of the particle or spacecraft, n' is the orbital mean motion  of the Moon, and hz is the
component of spacecraft orbital angular momentum normal to the plane of motion of the two
primary bodies.  In terms of more familiar orbital elements, the approximated integral can be
written

     C =  -µ/2a  -  n' [µa(1-e2)]1/2 cos i.

This relationship is known to astronomers as Tisserand's criterion for the identification of
comets that have made a close approach to a planet between apparitions.  The equation refers
to times when the spacecraft (or comet) is well away from the disturbing body because there are
other terms in Jacobi's integral that are of the order of the mass ratio and the normalized
passage distance.  Szebehely's book [6] has excellent discussions of Jacobi's integral and its
importance to research in the restricted three-body problem.

 Above, µ is the gravitational constant of the central primary (Earth), a and e  the semi-major
axis and eccentricity of the orbit, and i is the inclination of the orbit with respect to the Earth-
Moon plane.  This relationship is particularly useful for design and study of lunar Cycler orbits
because, in the circular restricted problem, the value of C must remain constant no matter how
many times the spacecraft encounters the Moon.  Furthermore, in any one swingby,

∆E  =  n' ∆hz.

This simple relationship means that the change in Earth-relative energy caused by any lunar
swingby will be accompanied by a change ∆E/n' in the  component of angular momentum that is
normal to the Earth-Moon plane.

An understanding of the relationship between energy and axial angular momentum allowed us
to write down the inclination [2] of the BackFlip orbit in terms of the shape and inclination of
the Earth-to-Moon transfer orbit, viz.

cos I =
−

µE

2a '
− CT

n ' µE a ' (1 - e '
2
)

   ,
where the primes refer to the Moon's orbit,  µE  is the Earth's gravitational constant, and

CT = -µE/(2a0) - n'[µE a0(1-e02)]1/2cos i0.

  The subscript 0 refers to the initial Earth-to-Moon transfer orbit and the inclinations are with
respect to the Earth-Moon plane.  Note that [2] has a sign error on the energy term in the
expression for cos I.
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It is important to note that lunar gravitational perturbations act on the spacecraft in a
cumulative way during the BackFlip transfer.  Indeed, the spacecraft never gets farther from
the Moon than a'{2(1-cos I)}1/2 or about 78% of the Earth-Moon distance during the BackFlip
transfers used for the Earth-Moon-Moon-Earth Cycler trajectories.  These perturbations were
the subject of some concern during early attempts to define full-model simulations of the
BackFlip.  Because the lunar perturbations act nearly perpendicularly to the spacecraft's
velocity vector, however, their effect on orbital energy is small and their net effect on the
transfer is to move the orbital node on the Earth-Moon plane a few degrees in the retrograde
direction.  This results in transfers a few hours shorter than those predicted by the zero-
patched conic approximations but, in no case did the perturbations interfere with the targeting
procedure enough to obviate the desired Moon-to-Moon transfer.

The Reflected BackFlip - A Family of Periodic Orbits
During the search for viable lunar Cycler orbits, undertaken at the suggestion of Dr. Aldrin, we
investigated the possibility of transferring directly from one BackFlip orbit to its reflection off
the Earth-Moon plane.  Such a scheme would be ideal for a single Cycler spacecraft as it would
provide twice-monthly Earth return opportunities.  Unfortunately, such trajectories that are
compatible with realistic Earth-Moon transfer orbits (V∞ > ~ 0.7 km/s) require a lunar
encounter with perilune substantially beneath the lunar surface.  We include this section on the
reflected BackFlip because it helps illuminate the process of discovery, because it helps
explain the need for the alternating holding orbits described later, and because the trajectory is
an example of a family of periodic orbits in the three-dimensional circular restricted three-
body problem.  Study of this family may lead to important academic insights and analytic
continuation.  There may also be practical applications for the retrograde  (I > ~ 135°) reflected
BackFlip which is compatible with launch conditions for some asteroid and comet missions.

 

Lunar Orbit

Out-of-Plane
Near-Circular

Moon-to-Moon
Transfers

I ~ 45°

Note: Reflected BackFlip Not
          Compatible with Low-Energy
          Earth-to-Moon Trajectories

Direction of 
Lunar Perturbation
During Transfer

Cycler

Fig. 4   Prograde Reflected BackFlip

Figure 4 is a diagram of the reflected BackFlip trajectory shown in the sidereal (non-rotating)
coordinate system.  These trajectories require sub-surface encounters with the Moon for
inclinations less than about 130° in the idealized case where perturbations are not considered
during transit.  For low inclinations (I < ~25°), these trajectories become highly perturbed
during transit and evolve into a class of orbits studied by Breakwell and others [7-10] as early
as 1962 and suggested as a mechanism for launching out-of-ecliptic interplanetary probes tha t



7

return to Earth more often than every six months.  The early studies dealt with the
interplanetary equivalents of the (relatively) unperturbed BackFlip transfers used in the Lunar
Cycler mechanism described below.  In our search for viable out-of-plane Moon-to-Moon
transfers, we generated low-inclination, highly perturbed trajectories similar to those
suggested by Breakwell and Gillespie [7].  These trajectories, although very  interesting and
potentially useful for other applications, required very low (< 0.4 km/s) values of V∞ with
respect to the Moon. They were abandoned for the Lunar Cycler application because they are
not compatible with low-energy Earth-to-Moon trajectories.

The statements above require some clarification.  It is not impossible for minimal energy Earth-
to-moon transfer trajectories to arrive at the moon with the low excess speeds required for the
prograde reflected backflip - but it is impossible in the context of the circular restricted three -
body problem.  When the gravitational influence of the Sun is considered, as in Belbruno's [11]
transfers through what he calls the weak stability boundary in the Sun-Earth-moon-spacecraft
four-body problem, then the solar gravitational perturbations can change the orbital angular
momentum without greatly affecting the orbital energy.  This, in turn, can disrupt the linear
relationship, given above, between the change in energy and the change in axial angular
momentum.  That is to say that the solar gravity can be used to change the value of the Jacobian
constant in the Earth-moon-spacecraft system and, therefore, change the moon-relative energy
of the spacecraft during close lunar encounter.  But such transfers require a trip to the region near
the sphere of influence of the Sun-Earth system.  As these transfers require from 4 to 6 months,
they are not practical for the short (days to weeks) lunar cycler transfers we seek for regular
transport of humans and perishable life-support supplies.  Without benefit of solar gravity,
spacecraft leaving the moon with excess speeds of less than 300 m/s cannot have subsequent
perigee distances less than about 120,000 km no matter how many lunar swingbys are used.  

The process of reflection may, however,  offer some academic insight into the circular restricted
three-body problem.  Because the reflected BackFlip is invariant under a reversal of time, and,
because the particle returns twice per month to the same position in the rotating frame, the
orbit is periodic with respect to that frame.  If the regression of the node on the Earth-Moon
plane is commensurable with the lunar motion, the orbit is also periodic in the sidereal or non-
rotating system although the period may be very long.  These orbits seem to correspond to the
"collision" cases of the families of almost rectilinear halo orbit families between the two
colinear libration points studied by Breakwell and Brown [8] and by Howell [10].  The reflected
BackFlip is almost certainly unstable although we have not studied the linear variational
equations or even regularized the equations, hoping to return to this very interesting problem in
the near future.
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Fig 5  Trajectory of the Reflected BackFlip in the Synodic Frame
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Figure 5 shows the motion of the BackFlip orbit in a rotating frame whose x axis points from
Moon to Earth, whose z axis is normal to the Earth-Moon plane, and whose y axis completes a
right-handed system.  The slight asymmetries shown are due to the facts that the orbit was not
targeted exactly for reflection and that the numerical integration from which the graphs were
made included the ellipticity of the lunar orbit, the solar gravitational perturbations, and the
physical libration of the Moon.  Nevertheless, the symmetry of the problem and the nature of
the curves show the periodicity of the reflection process.  Note that the orbit is not
symmetrical with respect to the xy plane and that the particle appears to "bounce" off the
Earth-Moon plane at the encounters.  It is also of some interest to note that another whole
family of orbits exists out of the plane by the use of odd nπ transfers with n = 3,5,...  A. Kogan
[12] has devised a method of deep-sky survey using a combination of a planar arc and a 540° out-
of-plane Moon-to-Moon transfer.  The arcs are joined by a practical lunar swingby.  Kogan
showed that the sequence is periodic in the synodic system and, therefore, repeatable for
continuous practical application.

During the review process for this paper, one of the referees suggested that the exact conditions
for the reflected BackFlip be published so that others may reproduce the results without undue
difficulty.  Since the publication of the preprint, we have performed a few numerical studies in
the circular restricted problem with µ = 0.0121516, the mass ratio in the moon-Earth problem.
These studies revealed that the following particular solution (see Table 1.) is periodic to the
order of the (direct) hunting procedure and the accuracy of the numerical integrations.

x0 = -0.9879360,             y0 = 0.0 z0= -0.0019897
dx/dt0 = 0.0 dy/dt0 = 3.508312 dz/dt0 = 0.0

At time, t = 2.54439 normalized units:

x= -0.9879335,        y = 8.0 x 10-7       z = -0.0019912
dx/dt = -0.0267222 dy/dt = 3.5069625 dz/dt = 0.0008999

Table 1. Initial and Final Conditions for Periodic Orbit

In Table 1,  the usual conventions are used with the Earth-Moon distance = 1.0,  the origin is a t
the barycenter, the mass of the system is 1.0, the mean motion of the primaries is 1.0, and the
period of motion of the primaries about each other is 2π.  The maximum z aquired is about 0.4
and the unnormalized passage distance is about 766 km, well below the surface of the moon.

It is interesting to note that this trajectory is within the region considered strongly perturbed by
the moon during transit and that attempts to continue this solution by numerical means into the
region of the solutions represented by Fig. 5 have been unsuccessful.  Indeed, the local minima of
the performance parameter reach a barrier in the function space of z0 and dy/dt0 which is
suggestive of bifurcation of the phase space.
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Fig. 6  Requirements for Idealized Reflected Lunar BackFlip

Figure 6 shows the conditions for the reflected BackFlip in the idealized circular restricted
three-body problem where the term idealized refers to the assumed absence of perturbations in
transit from Moon to Moon.  The figure shows the required passage distance and Moon-relative
excess speed for the reflection as a function of idealized inclination of the Moon-to-Moon
transfer.  The value of V∞ is given by {2VM2 (1 - cos I)}1/2  and the perilune distance during the
reflecting encounter follows from sin(α/2) = VM sin I/V∞.

The idealized requirements are not valid for inclinations less than about 25° ;  indeed, for
inclinations less than about 9°, the spacecraft never even leaves the Moon's ~60000 km sphere of
influence and the perturbations are quite strong throughout the transfer.  For retrograde Moon-
to-Moon transfers, even though the trajectories are practicable, the required excess speed is far
too high to be compatible with low-energy Earth-to-Moon transfers.  Thus, in spite of the
interesting and possibly useful nature of the reflected BackFlip, we were forced to abandon its
use to ensure return to the Moon twice per month for a single Cycler.  We hope to return to the
retrograde reflection in future studies as a potential holding and propellant-depot orbit for
spacecraft preparing for departure to Mars or to a near-Earth asteroid or short-period comet.

The Holding Orbit

The failure of our attempts to provide twice-monthly Earth return windows using a reflected
BackFlip maneuver, and the impracticality, in the Earth-Moon system,  of  "standoff"
encounters† that do not affect the trajectory led us to insert an elliptic, one-month return orbit

                                    
† In the Jupiter satellite tour problem4, because of the small mass ratio, it was possible to target
away from the encounter without substantially affecting the phasing of the orbit so that the
spacecraft could return to the same satellite after one or more revolutions of the spacecraft in its
orbit.  These encounters were dubbed "standoff" encounters.  In the Earth-Moon system, this
technique is not viable because of the large mass ratio.
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into the sequence for the Lunar Cycler.  The sequence is shown in Fig. 7 where, as before, the
Earth-to-Moon transfer is shown followed by a BackFlip transfer.  At this second lunar
encounter, we wish to have the option to target for either an Earth return or a lunar return
transfer.  If the Earth-return option is not desired (e.g. if there is no one at lunar base or lunar
orbit who wishes to come home), the Cycler is targeted for an elliptic holding orbit that returns
to the Moon after one revolution in its one month orbit.

This holding orbit will normally occur after a BackFlip transfer and will therefore require an
inclination change to accompany the change in eccentricity as the energy of the orbit must
remain constant before and after the second lunar encounter.  An important characteristic of the
holding orbit is that it be capable of being targeted for either an Earth-return or another
BackFlip when it returns to the Moon after its one revolution transfer.  This pattern will
provide three Earth-return opportunities every two months using a single Cycler and without
disrupting the pattern of viable Moon-to-Moon transfers during times when it is desired not to
select an Earth-return transfer.  Thus, the Cycler, once placed in its out-of-plane, one-month
period orbit, can simply continue to switch from a BackFlip orbit to a holding orbit for as long as
required until an Earth-return trip is desired.  Then, a few meters per second applied a few days
before the previous encounter will be sufficient to retarget the Cycler for an Earth-return
trajectory that has a period of 1/2 month (or 1/3 month is some cases) in order to ensure return to
the Moon after 2 (or 3) revolutions of the Cycler in its Earth-return orbit.

Lunar Orbit

Moderate Inclination
One-Month Lunar Return

Holding Orbit

    High Inclination (46  )
      Near Circular 180 

Moon-to-Moon Transfer
(The BackFlip)

1  3 or 1  2 Month, 
Low Perigee, Low Inclination

Earth-Moon  Moon-Earth
Transfer Orbits

Fig. 7  Encounter Geometry for Cycler with BackFlip and Holding Orbit

It should be kept in mind that the entire sequence must be capable of repeating in any case.  No
transfer should take place that requires substantial ∆V to re-establish the pattern.  The major
advantage of the Cycler is that it can be large and massive so that the entire program can
benefit from the life-support systems, radiation shielding, and propellant depot capabilities of
the Cycler.  This heavy equipment must be lifted to translunar orbit only once.  If the repeating
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Earth-Moon...Moon-Earth pattern is disrupted,  proportionately large amounts of propellant or
time will be required to restore the sequence.

The Earth-return transfers must, therefore, be resonant with the lunar motion.  The most
practical Earth-return transfers have periods of 1/2 month and 1/3 month.  The 1/3 month
transfers are not always available because the apogees of these orbits do not reach the lunar
apogee.  In some cases, it may be efficacious to use an Earth-return orbit that is 2/5 resonant
with the lunar motion although, in these cases, the Cycler will not return to the Moon for 2
months.  The inclination of these orbits with respect to the Earth-Moon plane will be slightly
different in each case.  The differences are slight because, for these highly elliptic orbits, the
Jacobian constant is dominated by the energy term.   For most applications involving the return
of astronauts to low Earth orbit, the selection of the particular resonance will not affect the
propellant requirements for the transfer vehicles because most of the maneuvers will be
accomplished using aerobraking.  For resupply and Cycler expansion missions, however, there
will be an advantage to scheduling these missions for a time when the (near minimal energy)
1/3 month Earth-Moon-Earth transfer can be used.
    
Adding More Cyclers

The encounter sequence recommended above is compatible with the addition of other Cycler
spacecraft that can increase the frequency of Earth-return opportunities and can provide for
rendezvous and/or joining of two Cyclers. If the sequence above is followed, two Cyclers can
provide semi-monthly Earth-return opportunities for as long as required.  Once every 1 and 1/2
months, the two Cyclers can rendezvous with each other to trade supplies or to remain together
as a larger station while a third Cycler takes the now-empty place of one of the first two.  

Lunar Orbit

    High Inclination (46  )
      Near Circular 180 

Moon-to-Moon Transfer
(The BackFlip)

Moderate Inclination
One-Month Lunar Return

Holding Orbits

1  3 or 1  2 Month, 
Low Perigee, Low Inclination

Earth-Moon  Moon-Earth
Transfer Orbits

A B
M 1

M 2

Fig. 8 Encounter Geometry Using Two Cyclers
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Clearly, the phasing of the two Cyclers must be selected carefully if these advantages are to be
had.  Further, there appears to be only one way to provide twice-monthly Earth-return
windows using only two Cyclers.  The "trick" is to ensure that both Cyclers encounter the Moon
at essentially the same time somewhere in the sequence.

Figure 8 is a diagram of the Cycler system showing two holding orbits.  Only one BackFlip orbit
is shown to avoid obscuring the figure.  The reader is asked to imagine the BackFlip to be
movable in the figure.  Because the BackFlip orbit can be entered from any of the other orbits
(except another BackFlip), it can be mentally inserted whenever necessary. The sequence is as
follows.  Suppose one Cycler encounters the Moon at M1 and enters the BackFlip orbit shown in
the figure while a second Cycler (also at M1) enters holding orbit A.  The first Cycler will
return to the Moon 1/2 month later at M2 where it enters holding orbit B.  At this time, the
second Cycler has completed 1/2 of its lunar return transfer on holding orbit A.  When the Moon
returns to M1, so does the second Cycler which now enters the BackFlip orbit shown on the
figure.  At this time, the first Cycler is halfway around holding orbit B.  When the second
Cycler completes its BackFlip at M2, the first completes its holding orbit B and both Cyclers
encounter the Moon simultaneously at M2.  The first Cycler now enters a BackFlip from M2 to M1
(not shown) while the second Cycler (just completing a BackFlip) enters holding orbit B.  The
entire sequence repeats with the roles of the Cyclers and the points M1 and M2 reversed.  After
three months, the sequence repeats exactly.  Notice that the two-Cycler  sequence provides
Earth-return opportunities twice per month whereas the single Cycler scenario yields 3 return
windows in 2 months.

Now consider the situation when one of the Cyclers is targeted for an Earth-return transfer.  I f
the Earth-return orbit is entered from a BackFlip orbit, the phasing will remain the same as i f
the homeward-bound Cycler had entered a holding orbit; the Cycler will return to the Moon in
one month and can enter its scheduled BackFlip.  If the Earth-return orbit is entered from a
holding orbit, however, the phasing relationship of the two Cyclers will be disrupted because
the Earth-return orbit will not return to the Moon for a full month rather than the 1/2 month
return it would have made if it had entered a BackFlip orbit instead of the Earth-return orbit.
The solution is simple;  do the same thing with the other Cycler the next time it is scheduled to
enter a BackFlip --  take it to Earth instead.  Then the phase of that Cycler is reversed and the
two-Cycler sequence is re-established.  There are other solutions such as using a 540° Moon-to-
Moon transfer (see Ref. 11) instead of a holding orbit somewhere in the sequence.  The most
frugal solution is to do nothing and let the Cyclers remain out of phase until another Earth
return is required and then initiate that transfer from a holding orbit.  If the Cyclers are out of
phase in this way, there will be a gap in the Earth-return opportunities even though each
Cycler independently provides three windows every two months.  It is therefore to be preferred,
whenever possible, that Earth-return transfers be initiated from BackFlip transfers rather
than from holding orbits.

Finally, consider how the two Cyclers can rendezvous for supply and personnel transfer or for
joining together to form a larger station.  Because the sequence provides for simultaneous Moon-
passage once every month and a half, there is an opportunity, at such times, to target both
Cyclers for Earth-return on the same trajectory.  During the one-month period of the Earth-
return transfer, the two spacecraft can transfer supplies and equipment needed by one or the
other as well as take on equipment and personnel sent up from LEO.  Crew members or travellers
can return to Earth near any of the multiple perigee passes made by the two Cyclers on the
(Moon-resonant) Earth-return trajectory.  When the two Cyclers return to the Moon with fresh
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supplies and/or crew, they may separate prior to Moon passage.  One can be targeted for a
BackFlip while the other can enter a holding orbit and the two-Cycler encounter sequence is
reacquired.  It was Dr. Aldrin who first noticed that the recommended sequence provides for
rendezvous of the two Cyclers.  We are grateful to him for pointing out this major advantage of
the pattern that also provides twice-monthly Earth-return opportunities.
 
Navigation and Targeting Requirements
The advantages of a relatively massive station travelling permanently from Earth to Moon and
back do not come entirely for free.  The Cyclers must be actively controlled in order to maintain
the pattern and the requirements for retargeting the transfers for Earth-return or Cycler
rendezvous will be somewhat greater than those for normal maintenance of the
BackFlip/holding orbit sequence.  Nevertheless, these requirements are quite small if the
maneuvers are scheduled early enough in the sequence.  Our experience shows that the aim
point at the second encounter of a BackFlip can be moved more than 10,000 km by the
application of about 10 m/s of ∆V  10 to 15 hours before the previous encounter.  No attempt was
made to optimize the timing of the maneuvers nor to use multiple impulse transfers.  Normal
maintenance ∆V for the sequence will be much less than the value quoted above.  After the
Cycler is "on station", the only requirements will be to correct for small errors in the previous
maneuver, magnified, perhaps by one or two intervening encounters.  Small trim maneuvers of a
few tenths of a meter per second will probably be required after each encounter to correct for
orbit determination and modeling errors. These normal maintenance maneuvers are probably
best performed over an optimally scheduled period of time using ion thrusters.

A full-time Cycler servicing extensive traffic between Earth and Moon will almost certainly
have an emergency maneuver capability drawing on its stores of cryogenic propellant normally
used for the transfer vehicles.  Or it may prove advantageous to have emergency "tugs" that can
leave the Cycler and rendezvous with disabled transfer vehicles and bring the vehicle or the
passengers back to the Cycler.  These emergency capabilities could be used to perform Cycler
maneuvers that may not have been planned far enough in advance.  Retargeting a BackFlip
transfer, for example, becomes very costly of ∆V after the Cycler has reached its maximum
latitude and starts back down to the Earth-Moon plane.  Retargeting only a few days before
encounter can require several tens or even hundreds of meters per second.  Thus, emergency
maneuvers, while costly, are still within the realm of possibility, even for a large Cycler.

Perhaps our best experience with the sensitivity of these trajectories comes from our efforts to
target through the two encounters of a BackFlip transfer to yield an Earth-return transfer after
the second encounter.  ∆V was added impulsively  in the three Cartesian directions at 72 hours
into the Earth-Moon transfer (approximately 16 hours before the first Lunar swingby) and the
effects of these changes observed through both lunar swingbys and the return to Earth.
Elements were compared well before and after lunar encounters to remove any "noise" due to the
swingby.  With this scheme the task became, in effect, to target through two unpowered lunar
swingbys to obtain the proper final  geocentric trajectory.  This method allowed the targeting to
take place at the 72 hour mark.  The impulsive velocity changes required had a vector sum of
about 10.2 m/sec.  So it did prove possible to effect the desired trajectory from the 72 hour mark,
well before the first Lunar swingby.  

The success with targeting at the 72 hour mark indicates that it should be much cheaper of ∆ V
to target from a point earlier in the Earth-Moon transfer.  The proper selection of the Earth-
Moon midcourse correction time should allow transfer into the BackFlip orbit with impulses of
almost negligible magnitude.    It was found that the second swingby parameters, miss distance
and location, and the final elements, were sensitive to very small changes in the impulsive
velocity increments. The radius of closest approach on the return to the Earth's vicinity was



14

sensitive to changes of the order of 0.01 m/sec near perigee of the original Earth-Moon
trajectory.  It proved quite easy to escape the Earth-Moon system after the second swingby i f
insufficient care was used in targeting.  Of course, for other mission scenarios, hyperbolic escape
will be of great value and not a hindrance.

Numerical Verification
The targeting studies and general curiosity led us to attempt to target full-model numerical
simulations of these trajectories from a low Earth orbit (with a 28.5° equatorial inclination)
through a BackFlip transfer, into a 1/2 month Earth-return orbit, and back to the Moon.  The
only control variables used were the time of launch and the position of the perigee of the
Earth-moon transfer ( which can also be controlled by selecting the time of translunar injection.)
The trajectories were propagated using Cowell's method and a 7th-Order, 10-cycle Runga-
Kutta integration scheme although for some of the near-collision transfers, a variation of
parameters method was selected, with mean anomaly as the fast variable, for use during lunar
encounter.  The gravitational effects of the Sun and the lunar ellipticity were included along
with the (less important) gravitational asymmetries of the Earth and the Moon. These
simulations were targeted "by hand" simply by keeping track of the partial derivatives of the
post-encounter Earth orbital elements with respect to the position of the initial nodal position
and argument of perigee.  

After relatively painless monitoring of several sets of minor trajectories to get the sensitivities,
we managed to target through both BackFlip encounters, then through a two-revolution Earth-
return trajectory, and back to within 35,000 km of the Moon without the use of any control other
than the time of translunar injection.  The lunar encounter distances were 4808 km., 6340 km.,
and 32,448 km at 144 , 443, and 1110 hours past launch respectively.  Of course, we started with
a trajectory that had already been targeted for the Moon with approximately the correct
Jacobian constant for a 45° BackFlip.  The final set of minor trajectories showed sensitivity of
the third lunar encounter position to be several tens of thousands of kilometers per hundredth of
a degree in initial node and perigee position.  Naturally we would not expect to launch this
accurately from low Earth orbit.  The point is that it is possible to design real-world nominal
transfers that achieve the objectives of the Cycler encounter sequence.  And the exercise
convinced us beyond any reasonable doubt that the ∆V requirements for a carefully planned
Cycler encounter sequence will not exceed 10 m/s per month, even with a lot of traffic.

Conclusions
A method has been presented for continuous orbital transfer between Earth and Moon that
requires no nominal impulses.  Retargeting impulses are required which, if carefully planned,
do not exceed 10 m/s per selected Earth-return window.  The principal mechanism of the
method is the use of the BackFlip or 180° Moon-to-Moon transfer.  A description of some
unsuccessful trial sequences was included to show the evolution of the Cycler concept as finally
presented.  One of these ideas was the reflected BackFlip maneuver which turned out to require
sub-lunar encounters for prograde trajectories compatible with low energy Earth-to-Moon
transfers.  It was suggested that these reflected transfers are periodic orbits in the restricted
three-body problem and may be of theoretical interest.  They may also have some practical
value for retrograde transfer in the Earth-Moon system.  A phasing mechanism was devised for
the recommended sequence that permits the addition of more Cyclers to the system and it was
shown that a two-Cycler program provides twice-monthly Earth-return windows.  A single
Cycler provides 3 Earth-return opportunities every 2 months.  It is our opinion that this is the
maximum continuous Earth-return frequency possible for a single prograde Cycler without
application of impulse.  A brief description of numerical verifications and rudimentary
targeting techniques was given and it was found possible to target through three lunar
encounters of the sequence using only the time of launch from low Earth orbit as a control.  It was
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pointed out that the Cycler concept will gain great advantage over direct round-trip transfer
from Earth-to-Moon because of the ability of the Cycler to be made very large, in affordable
increments, and thereby provide radiation protection for astronauts in transit, propellant depot
capability (ultimately cryogenics), and reusable life-support facilities.  It was pointed out tha t
the two-Cycler system recommended here is particularly amenable to incremental growth and
efficiency because of the ability of the two Cyclers to rendezvous with each other and join, i f
desired, into a larger station while a third Cycler takes the now empty place of one of the first
two.  Other advantages were pointed out which include the role of the Cycler as a logistical
and technological prototype for deep-space Cyclers to planets and other solar system
destinations.
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