DERIVATION OF THE B-PLANE (BODY PLANE) AND ITSASSOCIATED
PARAMETERS
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l. INTRODUCTION

When sending a spacecraft to some extraterrestrid body, one navigation and misson
desgn metric used is B-plane (Body Plane) targeting. The spacecraft’s target body
miss distance (with its associated covariance) and the target body’s impact radius, can
be readily mapped onto this B-plane. Things such as the peformance of trgectory
correction maneuvers (TCMs) and the effects of dynamic modd erors (as well as
perturbative effects of angular momentum desaturations {AMDs}) upon the
trgectory, can be characterized and optimized in terms of B-plane parameters. It is
herein that the advantage of it use is sought and found.

Simply stated, the Bplane can be defined as a plane which is normd to the incoming
asymptote of the hyperbolic orbit and contains the target body’s center of mass or,
equivdently, norma to the velocity vector a “infinity” where infinity is defined to be
far enough away from the vertex of the hyperbola, such that the trgectory essentialy
lies on the aymptote?. The Bvector is defined to be the vector from the origin (target
body’s center of mass) to that point where the asymptote (or vy vector) intersects the
B-plane.

1. CONSERVATION OF MECHANICAL ENERGY AND ANGULAR
MOMENTUM (IN THE ABSENCE OF NON-CONSERVATIVE
FORCES)

Assume the restricted two-body problem such that:

r=- 0 (1)
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Taking the scdar product of (1) by ¥ :
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The term on the left is the spacecraft's kinetic energy per unit mass, and the two
terms on the right are the potentid energy per unit mass, with ¢ being an abitrary
congtant that defines our potentid energy datum (which we choose to be a a distance

r = infinity making ¢ :;_n =0). Thus (taking the time rate of change of the previous

expression to be zero) we are left with a congant (i.e. specific mechanica energy is
consarved), being the familiar vis-viva equation:

Now, if we take the vector product of (1) by r:
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Sncer’ r =0, weaeleft with

Taking note of the fact that %(r F)=r"f +r" f,the previous equation becomes
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Thus, being that the time rate of change of the previous expression is equa to zero,
we are | eft with a congtant (i.e. pecific angular momentum is conserved):

h=r"v (3
Now, if we take the vector product of (1) into h:
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Taking note of the fact that %(r h)=t"h +f" h, and recaling that h = const:
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However, -rL?(r'h):rL?(h'r):rr—?((r'v)'r):rr—?[v(r-r)-r(r-v)]. Since in

generd a- a =aa, we areleft with:
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Taking note of the fact that md—f;&f—Q:an - i;rr , then we can write
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Integrating both sides of the previous expression, we are left with

i h=nE o+ P (4)
erg

Where P is a vector constant of integration which happens to point in the direction of
the hyperbola vertex (i.e. perigpse as defined in a perifoca coordinate frame) and has

magnitude equa to - viae (where ae is the hyperbolic semi-mgor axis and
eccentricity, respectively). Now, if we take the vector product of (4) by r:
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Genedly, a-b” c=a" b-c and a- a=a®, therefore
h? =nr +rPcos f

Where f is the angle between P and r (which is dso known as the true anomaly).
Solving for r, from the previous expresson:

h2
r= %n (5)
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We are left with an expresson which the reader may recognize as being the polar
form of a conic section.

1. DERIVATION OF THE B-PLANE  AND ASSOCIATED
PARAMETERS

Let us now define a unit vector S which has its origin a the target body’s center of
mass and is padld to the hyperbolic approach asymptote. We will be able to express

S interms of aperifocd coordinate frame. First, we may state that:

S-P=- Pcosf,
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of the fact that f will be greater than 180 degrees a infinity. So, if the vector Q is
defined as Q =h" P (i.e as in the perifocd coordinate frame), then we may express

S asfollows
. é _ u
S=- geosf, P +dn f, QQ (6)
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Recdl that the B-vector (B) is defined to be the vector from the origin to that point
where the asymptote (or vy vector) intersects the Bplane. One can adso think of this



vector as being the radius of closest approach to the target body if the target body
were masdess. Based on the definition of B, it must satidfy the following rdations:

B \S)=h (@

B-w§)=0 (8

Snce B and S ae mutudly orthogond (8) and the fact that S is a unit vector, we
have that:

Using expression (6), B can aso be written as:

€. u
B=- L@n f¥E- cosfaéglzl
Vy € P Qu

where the magnitude of B (snce B, S,andh ae mutualy orthogond) is Smply
B= h (10

However, if we take note of the fact that
h=rvcosg=r,v, (11)
where g is the spacecraft’s flight path angle with respect to the target body and rpv,

are the spacecraft’s perigpse radius and velocity magnitudes respectively, then we can
subgtitute (11) into (10) and obtain
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Asfor the actud B-plane, let us define the following vectors:

T o avector normd to S lying dong the reference plane, which typicaly is the
target body’s equatorid plane or padld to ether the ecliptic or Eath mean
equator of J2000

Then let
R=ST
In this manner, R, é, and T form the basis of an orthogona coordinate system with

S being normd to the B-plane and the other two lying within it. For navigation, we
usudly think of the miss parameter (B) as being broken down into two components:

Bl=B-R (14)
B2=B-T (15)

From (9), we can rewrite these expressons as



B2= (5' h)- T:i(T' s)- h=- Vi(R- h)

The fdlowing figure shows the geomery of the B-plane and its associated
parameters’
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Asociated with the B-plane, is a Linearized Time Of Hight (LTOF) and Time of
Closest Approach (TCA). The LTOF and TCA are exactly the same if the target body
were masdess (i.e. LTOF is the TCA for the rectilinear approach trgectory along the
incoming asymptote). The uncertainty in LTOF is one of the B-plane targeting
performance metrics. In short, the spacecraft will have a 3-dimensona covariance

mapped to the Bplane, with a component in the S direction. This component is what

effectivdy can be consdered as the uncertainty in LTOF (s_tor). The hyperbolic
TCA can be computed as:

TCA=T f-edanf

reference epoch

-a
m

Where dl the eements have been previoudy defined



IV.  DEFINITION OF B-PLANE STATISTICS

The navigation eror dlipse, upon the B-plane, defines the forma uncertainty about
the B-plane ampoint. A Gaussan didribuion is used when formulating these
datisics. The datistics associated with both components of B (i.e. B1 and B2 as
previoudy defined) are assumed to follow a binorma (two-dimensond) didribution
with the following probability dengty function:
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Where sg, st, and rrr are the standard deviaions for each component and their
asociated  corrdation  coefficient, respectively. Error élipses are used because
contours of congtant vaues of frr happen to be dlipses, for this type d digribution.
The dze and orientation of a given probability dlipse is defined by sg, ST, and rgr.
The dandard deviations are typicdly 1-s vaues, but for targeting purposes are
multiplied by 3 to get the error dlipsesin terms of 3-s vaues.

The corrdaion coefficent is not typicdly given because the components of the
dlipse can be trandformed (rotated) to a frame in which the corrdaion coefficient
goes to zero. In this frame, the orientation of the dlipse is given as an angle between
the origind R and T axes (q: measured from T positive clockwise)?. This coordinate
frame transformation is done by diagondizing the covariance matrix. Bascdly, for
any square matrix A that has a basis of eigenvectors, then

D=X"'AX

is a diagond matrix with the eigenvdues of A as the entries on the main diagond.
Here, X is the matrix with the associated eigenvectors as column vectors’. For
navigation purposes, if A is the origind covariance matrix mapped to the B-plane
ampoint (the upper 2 x 2 portion because the 3™ component relates to s, tor as
previoudy discussed), then D is the matrix with a rotated covariance such that the
corrdation coefficient is zero. The square root of the variances of this rotated
covariance matrix (i.e. the diagond dements of D) will be the semi-mgor (SMAA)
and sami-minor (SMIA) axes of the transformed probability error dlipse.



Sr and st can be expressed in terms of the SMAA and SMIA of the probability error
dlipse as shown in the figure below.
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The sandard deviations, sg and st, arerdated to SMAA and SMIA asfollows

s, =+/(SVAASNq)® + (SVIIA cosq)’

s, =-/(SMAAcosq)’ + (SVIIAsn )’

For this type of digribution, the probability of being indde a Ns eror dlipse (where
N isthe number of sgmadesired {1,2,3,...}) isgiven by the following equation:

N2

p(Ns)=1-e 2



Severd vaues reaulting from this probability function are given in the table beow.
Note that they are not the same as one-dimensond Gaussan vaues.

1 39.35%
2 86.47 %
3 98.89 %
4 99.97 %

The closest approach radius (radius of perigpserp) uncertainty can be found from

Where

V. CONCLUDING REMARKS

To map the spacecraft state and associated covariance to the B-plane, the andyst must
use a date trandtion matrix and map to the desred time, and perform a coordinate
frame rotation (typicdly from inetid to S-T-R). Then one mugt formulate partia
derivatives of the B-plane parameters of interest with respect to the spacecraft state
(or independent variables of interest). This dlows for the andys to relate changes in
the state (i.e. perturbations due to solar pressure, TCMs, AMDs, model errors, etc.) to
changes upon the Bplane parameters. These serve as measures to the error sengtivity
of a trgectory. The partids are not derived here, but are left to the reader to ether
find in the various references or to be saif-derived.
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