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I. INTRODUCTION 
 
When sending a spacecraft to some extraterrestrial body, one navigation and mission 
design metric used is B-plane (Body Plane) targeting. The spacecraft’s target body 
miss distance (with its associated covariance) and the target body’s impact radius, can 
be readily mapped onto this B-plane. Things such as the performance of trajectory 
correction maneuvers (TCMs) and the effects of dynamic model errors (as well as 
perturbative effects of angular momentum desaturations {AMDs}) upon the 
trajectory, can be characterized and optimized in terms of B-plane parameters. It is 
herein that the advantage of it use is sought and found.  
 
Simply stated, the B-plane can be defined as a plane which is normal to the incoming 
asymptote of the hyperbolic orbit and contains the target body’s center of mass or, 
equivalently, normal to the velocity vector at “infinity” where infinity is defined to be 
far enough away from the vertex of the hyperbola, such that the trajectory essentially 
lies on the asymptote2. The B-vector is defined to be the vector from the origin (target 
body’s center of mass) to that point where the asymptote (or v∞ vector) intersects the 
B-plane.  
 
 
II. CONSERVATION OF MECHANICAL ENERGY AND ANGULAR 

MOMENTUM (IN THE ABSENCE OF NON-CONSERVATIVE 
FORCES) 

 
Assume the restricted two-body problem such that: 
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Taking the scalar product of (1) by r& : 
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In general aa && =•aa , and letting rv &= and rv &&& = : 
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The term on the left is the spacecraft’s kinetic energy per unit mass, and the two 
terms on the right are the potential energy per unit mass, with c being an arbitrary 
constant that defines our potential energy datum (which we choose to be at a distance 

r = infinity making 0=
∞

=
µ

c ). Thus (taking the time rate of change of the previous 

expression to be zero) we are left with a constant (i.e. specific mechanical energy is 
conserved), being the familiar vis-viva equation: 
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Now, if we take the vector product of (1) by r: 
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Since 0=×rr , we are left with 
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Taking note of the fact that ( ) rrrrrr &&&&& ×+×=×
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, the previous equation becomes 
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Thus, being that the time rate of change of the previous expression is equal to zero, 
we are left with a constant (i.e. specific angular momentum is conserved): 
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Now, if we take the vector product of (1) into h: 
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Taking note of the fact that ( ) hrhrhr &&&&& ×+×=×
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, and recalling that h = const: 
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Integrating both sides of the previous expression, we are left with 
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Where P is a vector constant of integration which happens to point in the direction of 
the hyperbola vertex (i.e. periapse as defined in a perifocal coordinate frame) and has 
magnitude equal to aev 2

∞−  (where ae is the hyperbolic semi-major axis and 
eccentricity, respectively). Now, if we take the vector product of (4) by r: 
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Generally, cbacba •×=×•  and 2a=•aa , therefore 
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Where f is the angle between P and r (which is also known as the true anomaly). 
Solving for r, from the previous expression: 
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We are left with an expression which the reader may recognize as being the polar 
form of a conic section. 
 
 
III. DERIVATION OF THE B-PLANE AND ASSOCIATED 

PARAMETERS 
 
Let us now define a unit vector Ŝ  which has its origin at the target body’s center of 
mass and is parallel to the hyperbolic approach asymptote. We will be able to express 
Ŝ  in terms of a perifocal coordinate frame. First, we may state that: 
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of the fact that f will be greater than 180 degrees at infinity. So, if the vector Q is 
defined as PhQ ×=  (i.e. as in the perifocal coordinate frame), then we may express 

Ŝ  as follows: 
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Recall that the B-vector (B) is defined to be the vector from the origin to that point 
where the asymptote (or v∞ vector) intersects the B-plane. One can also think of this 



vector as being the radius of closest approach to the target body if the target body 
were massless. Based on the definition of B, it must satisfy the following relations: 
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Now, if we take the vector product of (7) by Ŝ : 
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Since B and Ŝ  are mutually orthogonal (8) and the fact that Ŝ  is a unit vector, we 
have that: 
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Using expression (6), B can also be written as: 
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where the magnitude of B (since B, Ŝ , and h are mutually orthogonal) is simply 
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However, if we take note of the fact that  
 

ppvrrvh == γcos  (11) 

 
where γ is the spacecraft’s flight path angle with respect to the target body and rpvp 
are the spacecraft’s periapse radius and velocity magnitudes respectively, then we can 
substitute (11) into (10) and obtain 
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Yet, recognizing that  
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We can now express B as 
 

p
p

p
p

p
p

rv
r

v

rv
vr

v

r
vr

B
2

2
22

2
1

2
12

∞∞

∞
∞

∞

∞

+=










+

=

+

=
µ

µµ

 (12) 

 
Solving for rp from (12), we get a quadratic equation in the same: 
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Which works out to become 
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As for the actual B-plane, let us define the following vectors: 
 

≡T a vector normal to Ŝ  lying along the reference plane, which typically is the 
target body’s equatorial plane or parallel to either the ecliptic or Earth mean 
equator of J2000 

 
Then let 
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In this manner, R, Ŝ , and T form the basis of an orthogonal coordinate system with 
Ŝ  being normal to the B-plane and the other two lying within it. For navigation, we 
usually think of the miss parameter (B) as being broken down into two components: 
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From (9), we can rewrite these expressions as 
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The following figure shows the geometry of the B-plane and its associated 
parameters3 

 

 
 
Associated with the B-plane, is a Linearized Time Of Flight (LTOF) and Time of 
Closest Approach (TCA). The LTOF and TCA are exactly the same if the target body 
were massless (i.e. LTOF is the TCA for the rectilinear approach trajectory along the 
incoming asymptote). The uncertainty in LTOF is one of the B-plane targeting 
performance metrics. In short, the spacecraft will have a 3-dimensional covariance 
mapped to the B-plane, with a component in the Ŝ  direction. This component is what 
effectively can be considered as the uncertainty in LTOF (σLTOF). The hyperbolic 
TCA can be computed as: 
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Where all the elements have been previously defined  



IV. DEFINITION OF B-PLANE STATISTICS 
 
The navigation error ellipse, upon the B-plane, defines the formal uncertainty about 
the B-plane aimpoint. A Gaussian distribution is used when formulating these 
statistics. The statistics associated with both components of B (i.e. B1 and B2 as 
previously defined) are assumed to follow a binormal (two-dimensional) distribution 
with the following probability density function: 
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Where σR, σT, and ρRT are the standard deviations for each component and their 
associated correlation coefficient, respectively. Error ellipses are used because 
contours of constant values of fRT happen to be ellipses, for this type of distribution. 
The size and orientation of a given probability ellipse is defined by σR, σT, and ρRT. 
The standard deviations are typically 1-σ values, but for targeting purposes are 
multiplied by 3 to get the error ellipses in terms of 3-σ values. 
 
The correlation coefficient is not typically given because the components of the 
ellipse can be transformed (rotated) to a frame in which the correlation coefficient 
goes to zero. In this frame, the orientation of the ellipse is given as an angle between 
the original R and T axes (θ: measured from T positive clockwise)2. This coordinate 
frame transformation is done by diagonalizing the covariance matrix. Basically, for 
any square matrix A that has a basis of eigenvectors, then 
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is a diagonal matrix with the eigenvalues of A as the entries on the main diagonal. 
Here, X is the matrix with the associated eigenvectors as column vectors5. For 
navigation purposes, if A is the original covariance matrix mapped to the B-plane 
aimpoint (the upper 2 x 2 portion because the 3rd component relates to σLTOF  as 
previously discussed), then D is the matrix with a rotated covariance such that the 
correlation coefficient is zero. The square root of the variances of this rotated 
covariance matrix (i.e. the diagonal elements of D) will be the semi-major (SMAA) 
and semi-minor (SMIA) axes of the transformed probability error ellipse.  



σR and σT can be expressed in terms of the SMAA and SMIA of the probability error 
ellipse as shown in the figure below. 
 

 
 
The standard deviations, σR and σT, are related to SMAA and SMIA as follows 
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For this type of distribution, the probability of being inside a Nσ error ellipse (where 
N is the number of sigma desired {1,2,3,…}) is given by the following equation: 
 

( ) 2

2

1
N

eNp
−

−=σ  



Several values resulting from this probability function are given in the table below. 
Note that they are not the same as one-dimensional Gaussian values. 
 

N P(Nσσ) 
1 39.35 % 
2 86.47 % 
3 98.89 % 
4 99.97 % 

 
The closest approach radius (radius of periapse rp) uncertainty can be found from 
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V. CONCLUDING REMARKS 
 

To map the spacecraft state and associated covariance to the B-plane, the analyst must 
use a state transition matrix and map to the desired time, and perform a coordinate 
frame rotation (typically from inertial to S-T-R). Then one must formulate partial 
derivatives of the B-plane parameters of interest with respect to the spacecraft state 
(or independent variables of interest). This allows for the analyst to relate changes in 
the state (i.e. perturbations due to solar pressure, TCMs, AMDs, model errors, etc.) to 
changes upon the B-plane parameters. These serve as measures to the error sensitivity 
of a trajectory. The partials are not derived here, but are left to the reader to either 
find in the various references or to be self-derived.  
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